Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Pharmacol Exp Ther ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621994

RESUMO

Delta opioid receptors hold potential as a target for neurological and psychiatric disorders, yet no delta opioid receptor agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the delta opioid receptor is nuclear. However, it is known that certain delta opioid receptor agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the SNC80/BW373U86 chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel delta opioid receptor agonists. We used a beta-arrestin assay to screen a small GPCR-focused chemical library. We identified a novel chemotype of delta opioid receptor agonists, that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the delta opioid receptor over a panel of 167 other GPCRs, is slightly biased towards G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious beta-arrestin recruiters and may suggest this novel class of delta opioid receptor agonists could be expanded on to develop a clinical candidate drug. Significance Statement Delta opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high throughput screening assay, we identified a novel delta opioid receptor agonist chemotype, with anti-allodynic efficacy which may serve as alternative for the current clinical candidates.

2.
Front Pharmacol ; 14: 1295518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027002

RESUMO

Background: Modern methods for quantifying signaling bias at G protein-coupled receptors (GPCRs) rely on using a single ß-arrestin isoform. However, it is increasingly appreciated that the two ß-arrestin isoforms have unique roles, requiring the ability to assess ß-arrestin isoform preference. Thus, methods are needed to efficiently screen the recruitment of both ß-arrestin isoforms as they compete for a target GPCR in cells. Methods: We used molecular cloning to develop fusion proteins of the δ-opioid receptor (δOR), ß-arrestin 1, and ß-arrestin 2 to fragments of click beetle green and click beetle red luciferases. In this assay architecture, recruitment of either ß-arrestin 1 or 2 to the δOR generates a spectrally distinct bioluminescent signal, allowing us to co-transfect all three constructs into cells prior to agonist challenge. Results: We demonstrate that our new assay, named "ClickArr," is a live-cell assay that simultaneously reports the recruitment of both ß-arrestin isoforms as they compete for interaction with the δOR. We further find that the partial δOR agonist TAN67 has a significant efficacy bias for ß-arrestin 2 over ß-arrestin 1 when recruitment is normalized to the reference agonist leu-enkephalin. We confirm that ClickArr reports this bias when run either as a high-throughput endpoint or high-throughput kinetic assay, and cross-validate this result using the PathHunter assay, an orthogonal commercial assay for reporting ß-arrestin recruitment to the δOR. Conclusion: Our results suggest that agonist:GPCR complexes can have relative ß-arrestin isoform bias, a novel signaling bias that may potentially open up a new dimension for drug development.

3.
Neuropharmacology ; 232: 109526, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004753

RESUMO

The δ opioid receptor (δOR) is a therapeutic target for the treatment of various neurological disorders, such as migraines, chronic pain, alcohol use, and mood disorders. Relative to µ opioid receptor agonists, δOR agonists show lower abuse liability and may be potentially safer analgesic alternatives. However, currently no δOR agonists are approved for clinical use. A small number of δOR agonists reached Phase II trials, but ultimately failed to progress due to lack of efficacy. One side effect of δOR agonism that remains poorly understood is the ability of δOR agonists to produce seizures. The lack of a clear mechanism of action is partly driven by the fact that δOR agonists range in their propensity to induce seizure behavior, with multiple δOR agonists reportedly not causing seizures. There is a significant gap in our current understanding of why certain δOR agonists are more likely to induce seizures, and what signal-transduction pathway and/or brain area is engaged to produce these seizures. In this review we provide a comprehensive overview of the current state of knowledge of δOR agonist-mediated seizures. The review was structured to highlight which agonists produce seizures, which brain regions have been implicated and which signaling mediators have been examined in this behavior. Our hope is that this review will spur future studies that are carefully designed and aimed to solve the question why certain δOR agonists are seizurogenic. Obtaining such insight may expedite the development of novel δOR clinical candidates without the risk of inducing seizures. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".


Assuntos
Dor Crônica , Receptores Opioides delta , Humanos , Receptores Opioides delta/agonistas , Ligantes , Encéfalo/metabolismo , Convulsões/induzido quimicamente , Receptores Opioides mu/agonistas , Analgésicos Opioides/efeitos adversos
4.
J Med Chem ; 66(5): 3312-3326, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36827198

RESUMO

Akuammine (1) and pseudoakuammigine (2) are indole alkaloids found in the seeds of the akuamma tree (Picralima nitida). Both alkaloids are weak agonists of the mu opioid receptor (µOR); however, they produce minimal effects in animal models of antinociception. To probe the interactions of 1 and 2 at the opioid receptors, we have prepared a collection of 22 semisynthetic derivatives. Evaluation of this collection at the µOR and kappa opioid receptor (κOR) revealed structural-activity relationship trends and derivatives with improved potency at the µOR. Most notably, the introduction of a phenethyl moiety to the N1 of 2 produces a 70-fold increase in potency and a 7-fold increase in selectivity for the µOR. The in vitro potency of this compound resulted in increased efficacy in the tail-flick and hot-plate assays of antinociception. The improved potency of these derivatives highlights the promise of exploring natural product scaffolds to probe the opioid receptors.


Assuntos
Alcaloides , Receptores Opioides mu , Animais , Receptores Opioides , Alcaloides/farmacologia , Receptores Opioides kappa/agonistas , Analgésicos Opioides/farmacologia , Relação Dose-Resposta a Droga
5.
Front Pharmacol ; 13: 914651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059958

RESUMO

The δ-opioid receptor (δOR) has been considered as a therapeutic target in multiple neurological and neuropsychiatric disorders particularly as δOR agonists are deemed safer alternatives relative to the more abuse-liable µ-opioid receptor drugs. Clinical development of δOR agonists, however, has been challenging in part due to the seizure-inducing effects of certain δOR agonists. Especially agonists that resemble the δOR-selective agonist SNC80 have well-established convulsive activity. Close inspection suggests that many of those seizurogenic δOR agonists efficaciously recruit ß-arrestin, yet surprisingly, SNC80 displays enhanced seizure activity in ß-arrestin 1 knockout mice. This finding led us to hypothesize that perhaps ß-arrestin 1 is protective against, whereas ß-arrestin 2 is detrimental for δOR-agonist-induced seizures. To investigate our hypothesis, we characterized three different δOR agonists (SNC80, ADL5859, ARM390) in cellular assays and in vivo in wild-type and ß-arrestin 1 and ß-arrestin 2 knockout mice for seizure activity. We also investigated downstream kinases associated with ß-arrestin-dependent signal transduction. We discovered that δOR agonist-induced seizure activity strongly and positively correlates with ß-arrestin 2 efficacy for the agonist, but that indirect inhibition of ERK activation using the MEK inhibitor SL327 did not inhibit seizure potency and duration. Inhibition of the PI3K/AKT/mTOR signaling with honokiol but not PQR530, attenuated SNC80 seizure duration in ß-arrestin 1 knockout, but honokiol did not reduce SNC80-induced seizures in wild-type mice. Ultimately, our results indicate that ß-arrestin 2 is correlated with δOR agonist-induced seizure intensity, but that global ß-arrestin 1 knockout mice are a poor model system to investigate their mechanism of action.

6.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077284

RESUMO

The subventricular zone (SVZ) in lateral ventricles is the largest neurogenic region in adult brain containing high amounts of copper (Cu). This study aims to define the role of Cu in adult neurogenesis by chelating labile Cu ions using a well-established Cu chelator D-Penicillamine (D-Pen). A neurosphere model derived from adult mouse SVZ tissues was established and characterized for its functionality with regards to neural stem/progenitor cells (NSPCs). Applying D-Pen in cultured neurospheres significantly reduced intracellular Cu levels and reversed the Cu-induced suppression of NSPC's differentiation and migration. An in vivo intracerebroventricular (ICV) infusion model was subsequently established to infuse D-Pen directly into the lateral ventricle. Metal analyses revealed a selective reduction of Cu in SVZ by 13.1% (p = 0.19) and 21.4% (p < 0.05) following D-Pen infusions at low (0.075 µg/h) and high (0.75 µg/h) doses for 28 days, respectively, compared to saline-infused controls. Immunohistochemical studies revealed that the 7-day, low-dose D-Pen infusion significantly increased Ki67(+)/Nestin(+) cell counts in SVZ by 28% (p < 0.05). Quantification of BrdU(+)/doublecortin (DCX)(+) newborn neuroblasts in the rostral migration stream (RMS) and olfactory bulb (OB) further revealed that the short-term, low-dose D-Pen infusion, as compared with saline-infused controls, resulted in more newborn neuroblasts in OB, while the high-dose D-Pen infusion showed fewer newborn neuroblasts in OB but with more arrested in the RMS. Long-term (28-day) infusion revealed similar outcomes. The qPCR data from neurosphere experiments revealed altered expressions of mRNAs encoding key proteins known to regulate SVZ adult neurogenesis, including, but not limited to, Shh, Dlx2, and Slit1, in response to the changed Cu level in neurospheres. Further immunohistochemical data indicated that Cu chelation also altered the expression of high-affinity copper uptake protein 1 (CTR1) and metallothionein-3 (MT3) in the SVZ as well as CTR1 in the choroid plexus, a tissue regulating brain Cu homeostasis. Taken together, this study provides first-hand evidence that a high Cu level in SVZ appears likely to maintain the stability of adult neurogenesis in this neurogenic zone.


Assuntos
Cobre , Ventrículos Laterais , Animais , Encéfalo , Movimento Celular , Proliferação de Células , Cobre/farmacologia , Camundongos , Neurogênese/fisiologia , Bulbo Olfatório
7.
Pharmaceuticals (Basel) ; 15(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890173

RESUMO

The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.

8.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630616

RESUMO

A few neurotransmitter systems have fascinated the research community, as muchas the opioid system (i.e., opioid ligands and their receptors) [...].


Assuntos
Analgésicos Opioides , Receptores Opioides , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Descoberta de Drogas , Ligantes
9.
Pharmacol Biochem Behav ; 216: 173377, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364122

RESUMO

The kappa opioid receptor is a known regulator of ethanol consumption, but the molecular mechanisms behind its actions have been underexplored. The scaffolding protein ß-arrestin 2 has previously been implicated in driving ethanol consumption at the related delta opioid receptor and has also been suggested to be a driver behind other negative kappa opioid receptor mediated effects. Here, we used kappa opioid agonists with different efficacies for recruiting ß-arrestin 2 and knockout animals to determine whether there is a role for ß-arrestin 2 in the modulation of voluntary ethanol consumption by the kappa opioid receptor. We find that an agonist with low ß-arrestin 2 efficacy more consistently lowers ethanol consumption than agonists with high efficacy for ß-arrestin 2. However, knockdown of ß-arrestin 2 amplifies the ethanol consumption-promoting effects of the arrestin-recruiting kappa agonists U50,488 and nalfurafine. We control for potentially confounding sedative effects at the kappa opioid receptor and find that ß-arrestin 2 is not necessary for kappa opioid receptor-mediated sedation, and that sedation does not correlate with effects on ethanol consumption. Overall, the results suggest a complex relationship between agonist profile, sex, and kappa opioid receptor modulation of ethanol consumption, with little role for kappa opioid receptor-mediated sedation.


Assuntos
Consumo de Bebidas Alcoólicas , Receptores Opioides kappa , Analgésicos Opioides/farmacologia , Animais , Etanol/farmacologia , Receptores Opioides kappa/agonistas , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
10.
Pharmacol Res ; 177: 106091, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101565

RESUMO

Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (µOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on ß-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from ß-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased µOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Receptores Opioides kappa , Analgésicos/uso terapêutico , Analgésicos Opioides/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Proteínas de Ligação ao GTP/metabolismo , Humanos , Dor/tratamento farmacológico , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , beta-Arrestinas/metabolismo
11.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885825

RESUMO

The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious ß-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit ß-arrestin, as it has been suggested that compounds that efficaciously recruit ß-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a 'NAM-agonist' in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.


Assuntos
Receptores Opioides delta/agonistas , Regulação Alostérica/efeitos dos fármacos , Aminoácidos/química , Sítios de Ligação , AMP Cíclico/metabolismo , Encefalina Leucina/química , Encefalina Leucina/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , beta-Arrestinas/metabolismo
12.
RSC Med Chem ; 12(11): 1958-1967, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825191

RESUMO

µ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional µ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit ß-arrestins, which correlate with certain adverse effects at µ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and µ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced ß-arrestin recruitment efficacy through both the δ-opioid and µ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased µ/δ opioid agonist pharmacological profiles.

13.
Front Pharmacol ; 12: 764885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803709

RESUMO

Background and Purpose: Mitragyna speciosa extract and kratom alkaloids decrease alcohol consumption in mice at least in part through actions at the δ-opioid receptor (δOR). However, the most potent opioidergic kratom alkaloid, 7-hydroxymitragynine, exhibits rewarding properties and hyperlocomotion presumably due to preferred affinity for the mu opioid receptor (µOR). We hypothesized that opioidergic kratom alkaloids like paynantheine and speciogynine with reduced µOR potency could provide a starting point for developing opioids with an improved therapeutic window to treat alcohol use disorder. Experimental Approach: We characterized paynantheine, speciociliatine, and four novel kratom-derived analogs for their ability to bind and activate δOR, µOR, and κOR. Select opioids were assessed in behavioral assays in male C57BL/6N WT and δOR knockout mice. Key Results: Paynantheine (10 mg∙kg-1, i.p.) produced aversion in a limited conditioned place preference (CPP) paradigm but did not produce CPP with additional conditioning sessions. Paynantheine did not produce robust antinociception but did block morphine-induced antinociception and hyperlocomotion. Yet, at 10 and 30 mg∙kg-1 doses (i.p.), paynantheine did not counteract morphine CPP. 7-hydroxypaynantheine and 7-hydroxyspeciogynine displayed potency at δOR but limited µOR potency relative to 7-hydroxymitragynine in vitro, and dose-dependently decreased voluntary alcohol consumption in WT but not δOR in KO mice. 7-hydroxyspeciogynine has a maximally tolerated dose of at least 10 mg∙kg-1 (s.c.) at which it did not produce significant CPP neither alter general locomotion nor induce noticeable seizures. Conclusion and Implications: Derivatizing kratom alkaloids with the goal of enhancing δOR potency and reducing off-target effects could provide a pathway to develop novel lead compounds to treat alcohol use disorder with an improved therapeutic window.

14.
J Med Chem ; 64(18): 13873-13892, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34505767

RESUMO

Mitragynine and 7-hydroxymitragynine (7OH) are the major alkaloids mediating the biological actions of the psychoactive plant kratom. To investigate the structure-activity relationships of mitragynine/7OH templates, we diversified the aromatic ring of the indole at the C9, C10, and C12 positions and investigated their G-protein and arrestin signaling mediated by mu opioid receptors (MOR). Three synthesized lead C9 analogs replacing the 9-OCH3 group with phenyl (4), methyl (5), or 3'-furanyl [6 (SC13)] substituents demonstrated partial agonism with a lower efficacy than DAMGO or morphine in heterologous G-protein assays and synaptic physiology. In assays limiting MOR reserve, the G-protein efficacy of all three was comparable to buprenorphine. 6 (SC13) showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning in mice. These results suggest the possibility of activating MOR minimally (G-protein Emax ≈ 10%) in cell lines while yet attaining maximal antinociception in vivo with reduced opioid liabilities.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides mu/agonistas , Alcaloides de Triptamina e Secologanina/farmacologia , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/síntese química , Analgésicos Opioides/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina e Secologanina/efeitos adversos , Alcaloides de Triptamina e Secologanina/síntese química , Alcaloides de Triptamina e Secologanina/metabolismo , Relação Estrutura-Atividade
15.
Sci Signal ; 14(694)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344831

RESUMO

G protein-coupled receptors (GPCRs) are implicated in the regulation of fear and anxiety. GPCR signaling involves canonical G protein pathways but can also engage downstream kinases and effectors through scaffolding interactions mediated by ß-arrestin. Here, we investigated whether ß-arrestin signaling regulates anxiety-like and fear-related behavior in mice in response to activation of the GPCR δ-opioid receptor (δOR or DOR). Administration of ß-arrestin-biased δOR agonists to male C57BL/6 mice revealed ß-arrestin 2-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the dorsal hippocampus and amygdala and ß-arrestin 1-dependent activation of ERK1/2 in the nucleus accumbens. In mice, ß-arrestin-biased agonist treatment was associated with reduced anxiety-like and fear-related behaviors, with some overlapping and isoform-specific input. In contrast, applying a G protein-biased δOR agonist decreased ERK1/2 activity in all three regions as well as the dorsal striatum and was associated with increased fear-related behavior without effects on baseline anxiety. Our results indicate a complex picture of δOR neuromodulation in which ß-arrestin 1- and 2-dependent ERK signaling in specific brain subregions suppresses behaviors associated with anxiety and fear and opposes the effects of G protein-biased signaling. Overall, our findings highlight the importance of noncanonical ß-arrestin-dependent GPCR signaling in the regulation of these interrelated emotions.


Assuntos
Ansiedade , Medo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , beta-Arrestina 1/genética , beta-Arrestina 2 , beta-Arrestinas/metabolismo
16.
Sci Rep ; 11(1): 11432, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075074

RESUMO

Retinitis Pigmentosa (RP) is a mostly incurable inherited retinal degeneration affecting approximately 1 in 4000 individuals globally. The goal of this work was to identify drugs that can help patients suffering from the disease. To accomplish this, we screened drugs on a zebrafish autosomal dominant RP model. This model expresses a truncated human rhodopsin transgene (Q344X) causing significant rod degeneration by 7 days post-fertilization (dpf). Consequently, the larvae displayed a deficit in visual motor response (VMR) under scotopic condition. The diminished VMR was leveraged to screen an ENZO SCREEN-WELL REDOX library since oxidative stress is postulated to play a role in RP progression. Our screening identified a beta-blocker, carvedilol, that ameliorated the deficient VMR of the RP larvae and increased their rod number. Carvedilol may directly on rods as it affected the adrenergic pathway in the photoreceptor-like human Y79 cell line. Since carvedilol is an FDA-approved drug, our findings suggest that carvedilol can potentially be repurposed to treat autosomal dominant RP patients.


Assuntos
Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Doenças Genéticas Inatas , Retinite Pigmentosa , Rodopsina , Visão Ocular , Peixe-Zebra , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Mutação , Células Fotorreceptoras Retinianas Bastonetes , Retinite Pigmentosa/tratamento farmacológico , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transgenes , Visão Ocular/efeitos dos fármacos , Visão Ocular/imunologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
Pharm Res ; 38(7): 1221-1234, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34114163

RESUMO

PURPOSE: Opioids have been the main factor for drug overdose deaths in the United States. Current naloxone delivery systems are effective in mitigating the opioid effects only for hours. Naloxone-loaded poly(lactide-co-glycolide) (PLGA) microparticles were prepared as quick- and long-acting naloxone delivery systems to extend the naloxone effect as an opioid antidote. METHODS: The naloxone-PLGA microparticles were made using an emulsification solvent extraction approach with different formulation and processing parameters. Two PLGA polymers with the lactide:glycolide (L:G) ratios of 50:50 and 75:25 were used, and the drug loading was varied from 21% to 51%. Two different microparticles of different sizes with the average diameters of 23 µm and 50 µm were produced using two homogenization-sieving conditions. All the microparticles were critically characterized, and three of them were evaluated with ß-arrestin recruitment assays. RESULTS: The naloxone encapsulation efficiency (EE) was in the range of 70-85%. The EE was enhanced when the theoretical naloxone loading was increased from 30% to 60%, the L:G ratio was changed from 50:50 to 75:25, and the average size of the particles was reduced from 50 µm to 23 µm. The in vitro naloxone release duration ranged from 4 to 35 days. Reducing the average size of the microparticles from 50 µm to 23 µm helped eliminate the lag phase and obtain the steady-state drug release profile. The cellular pharmacodynamics of three selected formulations were evaluated by applying DAMGO, a synthetic opioid peptide agonist to a µ-opioid receptor, to recruit ß-arrestin 2. CONCLUSIONS: Naloxone released from the three selected formulations could inhibit DAMGO-induced ß-arrestin 2 recruitment. This indicates that the proposed naloxone delivery system is adequate for opioid reversal during the naloxone release duration.


Assuntos
Portadores de Fármacos/química , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Overdose de Opiáceos/tratamento farmacológico , Animais , Células CHO , Cricetulus , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Humanos , Microesferas , Naloxona/farmacocinética , Antagonistas de Entorpecentes/farmacocinética , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície , Fatores de Tempo
18.
Behav Brain Res ; 399: 113051, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33279641

RESUMO

Heterologous sensitization of adenylyl cyclase (AC) is defined by an enhanced cAMP response following persistent activation of Gαi/o-coupled receptors. This phenomenon was first observed in cellular models, and later reported in animal models of inflammatory pain or following chronic exposure to drugs of abuse including opioids and cocaine. Recently, we used genome-wide siRNA screening to identify Cullin3 signaling as a mediator of AC sensitization in cellular models. We also showed that pharmacological inhibition of Cullin3 with the neddylation inhibitor, MLN4924, abolished heterologous sensitization of several AC isoforms, including AC1, AC2, AC5, and AC6. Because ACs, especially AC1, have been implicated in alcohol-induced locomotor sensitization and inflammatory pain, we assessed the potential activity of MLN4924 in both murine models. We found that MLN4924 (30 mg/kg, i.p.) accumulated in the brain and reduced both locomotor sensitization induced by repeated alcohol administration and allodynia in an inflammatory pain model. Based on our previous findings that MLN4924 potently blocks AC sensitization in cellular models, we propose that the activity of MLN4924 in both animal models potentially occurs through blocking AC sensitization. Our findings provide the basis for understanding the molecular mechanism and yield a new pathway for drug development for pathological disorders associated with AC sensitization.


Assuntos
Alcoolismo/tratamento farmacológico , Depressores do Sistema Nervoso Central/farmacologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Proteínas Culina/antagonistas & inibidores , Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Etanol/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Locomoção/efeitos dos fármacos , Proteína NEDD8 , Pirimidinas/farmacologia , Alcoolismo/complicações , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Ciclopentanos/administração & dosagem , Ciclopentanos/farmacocinética , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Etanol/administração & dosagem , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética
19.
J Nat Prod ; 84(1): 71-80, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33326237

RESUMO

The seeds of the akuamma tree (Picralima nitida) have been used as a traditional treatment for pain and fever. Previous studies have attributed these effects to a series of indole alkaloids found within the seed extracts; however, these pharmacological studies were significantly limited in scope. Herein, an isolation protocol employing pH-zone-refining countercurrent chromatography was developed to provide six of the akuamma alkaloids in high purity and quantities sufficient for more extensive biological evaluation. Five of these alkaloids, akuammine (1), pseudo-akuammigine (3), akuammicine (4), akuammiline (5), and picraline (6), were evaluated against a panel of >40 central nervous system receptors to identify that their primary targets are the opioid receptors. Detailed in vitro investigations revealed 4 to be a potent kappa opioid receptor agonist, and three alkaloids (1-3) were shown to have micromolar activity at the mu opioid receptor. The mu opioid receptor agonists were further evaluated for analgesic properties but demonstrated limited efficacy in assays of thermal nociception. These findings contradict previous reports of the antinociceptive properties of the P. nitida alkaloids and the traditional use of akuamma seeds as analgesics. Nevertheless, their opioid-preferring activity does suggest the akuamma alkaloids provide distinct scaffolds from which novel opioids with unique pharmacologic properties and therapeutic utility can be developed.


Assuntos
Alcaloides/farmacologia , Analgésicos/uso terapêutico , Apocynaceae/química , Indóis/farmacologia , Receptores Opioides mu/uso terapêutico , Terpenos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Analgésicos/química , Animais , Indóis/química , Indóis/isolamento & purificação , Receptores Opioides kappa , Receptores Opioides mu/agonistas , Receptores Opioides mu/análise , Alcaloides de Triptamina e Secologanina/química , Sementes/química , Terpenos/química , Terpenos/isolamento & purificação
20.
Headache ; 61(1): 170-178, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33326598

RESUMO

OBJECTIVE: The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. BACKGROUND: The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. METHODS: The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. RESULTS: KNT-127 inhibited CSD events (t(10)  = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20)  = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. CONCLUSIONS: This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.


Assuntos
Analgésicos Opioides/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Transtornos de Enxaqueca/tratamento farmacológico , Morfinanos/farmacologia , Receptores Opioides delta/agonistas , Analgésicos Opioides/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfinanos/administração & dosagem , Nitroglicerina/farmacologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...